

basic education

Department:
Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

TIME: 3 hours

This question paper consists of 17 pages and a 2-page formula sheet.

AFTERNOON SESSION

Copyright reserved **Please turn over Please turn over**

nschwarzen der Stadt aus d

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of SEVEN questions.
- 2. Answer ALL the questions.
- 3. Sketches and diagrams must be large, neat and FULLY LABELLED.
- 4. Show ALL calculations and round off answers correctly to TWO decimal places.
- 5. Number the answers correctly according to the numbering system used in this question paper
- 6. You may use a non-programmable calculator.
- 7. Calculations must include:
	- 7.1 Formulae and manipulations where needed
	- 7.2 Correct replacement of values
	- 7.3 Correct answer and relevant units where applicable
- 8. A formula sheet is attached at the end of this question paper.
- 9. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

 Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question numbers (1.1 to 1.15) in
the ANSWER BOOK, e.g. 1.16 E.
1.1 Choose the correct example of an unsafe condition that is likely to cause the ANSWER BOOK, e.g. 1.16 E.

- damage to property or an injury:
	- A Running in the workshop
	- B Spilling liquid or oil without cleaning it up
	- C Faulty tools or equipment
	- D Overloading electrical outlets when connecting many appliances (1)
- 1.2 An RLC series circuit is predominantly inductive when ...
	- A $X_c > X_l$
	- B $X_L > X_C$
	- C $X_L = X_C$
- $D \qquad V_c > V_L$ (1)
	- 1.3 The phase angle of a predominantly capacitive RLC series circuit is ...
		- A leading.
		- B lagging.
		- C in phase.
	- D zero. (1)
	- 1.4 The ... of a resonant circuit is the measure of how well it responds to a range

of frequencies.

- A conductance
- B dissipation factor
- C resonant frequency
- D selectivity (1)
- 1.5 The standard international phase sequence for a three-phase system $is...$
	- A red, yellow, blue.
	- B red, blue, yellow.
	- C blue, yellow, red.
	- D yellow, blue, red. (1)
- 1.6 The phase angle between any two phases of a balanced three-phase system is
	- A 150 degrees.
	- B 180 degrees.
	- C 120 degrees.
	-

-
- Copyright reserved

Copyright reserved

Copyright reserved

Please turn over

Please turn over

Please turn over

Please turn over

D scan inputs, process inputs, update outputs. (1) (1)

1.14 A semiconductor device that uses light to connect an electrical signal between two electrically isolated circuits is called a/an ...

QUESTION 3: RLC CIRCUITS

- 3.1 Define *capacitive reactance* with reference to RLC circuits. (2)
- 3.2 State the phase relationship between the current and voltage in a pure inductive AC circuit. (1)
- 3.3 Refer to FIGURE 3.3 below and answer the questions that follow.

FIGURE 3.3: RLC SERIES CIRCUIT

Given:

3.4 Refer to FIGURE 3.4 A and FIGURE 3.4 B below to answer the questions that follow.

FIGURE 3.4 A: PARALLEL RESONANT CIRCUIT

FIGURE 3.4 B: DATA OF THE RLC PARALLEL CIRCUIT

- 3.4.1 Determine the resonant frequency in FIGURE 3.4 B. (1)
- 3.4.2 Compare the values of the inductive reactance and capacitive reactance when the frequency increases from 200 Hz to 1 600 Hz. (2)
- 3.4.3 Calculate the voltage drop across the inductor when the frequency is 600 Hz. (3)
- 3.4.4 Calculate the value of the capacitor using the reactance value at 600 Hz. (3)

3.5 Refer to FIGURE 3.5 below and answer the questions that follow.

- 3.5.2 Calculate the voltage drop across the inductor. (3)
- 3.5.3 Calculate the Q-factor of the circuit. (3)
- 3.5.4 Explain why the phase angle of the circuit in FIGURE 3.5 would be zero. (2)

[35]

QUESTION 4: THREE-PHASE AC GENERATION
4.1 FIGURE 4.1 below is a block diagram of the national grid. Answer the questions that follow.

FIGURE 4.1: NATIONAL GRID

- 4.1.1 Name the processes at **A**, **B** and **C**. (3)
- 4.1.2 Draw the voltage waveforms generated at A. (4)
- 4.1.3 Explain why Transformer 1 is a step-up transformer. (2)
- 4.1.4 Determine the type of connection used on the secondary windings of Transformer 3 and motivate your answer. (2)
- 4.2 A delta-connected three-phase system draws a line current of 15 A and a line voltage of 380 V. It operates at a power factor of 0,9 lagging.

Answer the questions that follow.

Given:

Calculate the:

4.3 State TWO advantages of power factor correction to the consumer. (2)

 4.4 FIGURE 4.4 below shows an analogue power factor meter. Answer the questions that follow.

FIGURE 4.4: POWER FACTOR METER

- 4.4.1 Does the reading show a leading or lagging power factor? (1)
- 4.4.2 State the cause of this type of reading. (1)
- 4.4.3 State how the meter reading could be brought closer to unity. (1)
- 4.5 Refer to FIGURE 3.5 below and answer the questions that follow.

FIGURE 4.5: THREE-PHASE LOAD

- 4.5.1 Calculate the total power of the load. (3)
- 4.5.2 State TWO quantities, other than power, that can be determined by using the two-wattmeter method. (2)
- 4.5.3 Explain why the two-wattmeter method is preferred over the three-wattmeter method. (2)

[35]

QUESTION 5: THREE-PHASE TRANSFORMERS

that follow.

FIGURE 5.1: THREE-PHASE TRANSFORMER

5.3 FIGURE 5.3 below shows a three-phase transformer. Answer the questions that follow.

FIGURE 5.3: THREE-PHASE TRANSFORMER

Given:

 5.3.1 Identify the configuration of the three-phase transformer in FIGURE 5.3. (1)

Calculate the:

QUESTION 6: THREE-PHASE MOTORS AND STARTERS

6.1 Refer to FIGURE 6.1 below and answer the questions that follow.

-
-
-
-
-

-
-
-
- 6.2.3 Name TWO important procedures to follow before testing the
insulation resistance of the motor in FIGURE 6.2.
Copyright reserved
Please turn over
Estern cape **EIGURE 6.2: THREE-PHASE MOTOR CONNECTION**

6.2.1 Is this motor connected in star or in delta? (1)

6.2.2 State how the direction of rotation of this motor can be reversed. (1)

6.2.3 Name TWO important procedures to foll FIGURE 6.2: THREE-PHASE MOTOR CONNECTION
6.2.1 Is this motor connected in star or in delta? (1)
6.2.2 State how the direction of rotation of this motor can be reversed. (1)
6.2.3 Name TWO important procedures to follow bef 6.2.3 Name TWO important procedures to follow before testing the State how the direction of rotation of this motor can be reversed. (1)

Name TWO important procedures to follow before testing the

insulation resistance of the motor in FIGURE 6.2. (2)
 CONSECTED ASSESS

Please turn ove

 6.3 A star-connected three-phase motor with four pole pairs per phase draws a line current of 6 A when connected to a 380 V/50 Hz supply. The power factor is 0,85 and the efficiency is 90%.

Given:

$$
p = 4 \n lL = 6 A \n VL = 380 V \nf = 50 Hz \n cos θ = 0,85 \n η = 90%
$$

Calculate the:

6.4 Refer to FIGURE 6.4 below and answer the questions that follow.

6.4.1 Name the component that prevents $MC₁$ from automatically 6.4.1 Name the component that prevents MC_1 from automatically
energising when the power is restored after a power failure. (1)
6.4.2 State the function of $MC_1 N/O_2$. (2)
Copyright reserved Please turn over

QUESTION 7: PROGRAMMABLE LOGIC CONTROLLERS (PLCs)

- 7.1 Refer to the hardware of a PLC and answer the questions that follow.
	- 7.1.1 Name TWO types of hardware modules used in a PLC, other than the $CPU.$ (2)
	- 7.1.2 State THREE functions of the central processing unit (CPU). (3)
	- 7.1.3 Name the component used to switch the load connected to a PLC. (1)
- 7.2 Explain the term scan time with reference to the scan cycle of the PLC. (2)
- 7.3 Explain the term software with reference to the PLC. (3)
- 7.4 Refer to sensors as input devices of a PLC and answer the questions that follow.
	- 7.4.1 Define the term sensor. (2)
	- 7.4.2 List THREE types of sensors other than the overload sensor.

FIGURE 7.4.3: OVERLOAD SENSOR (3)

 7.4.3 Explain why the overload sensor in FIGURE 7.4.3 is connected to an analogue input on a PLC. (3)

 7.5 FIGURE 7.5 below shows a control circuit of a forward-reverse starter. Draw the PLC ladder logic program that will execute the same function in a PLC system.

FIGURE 7.5: CONTROL CIRCUIT OF A FORWARD-REVERSE STARTER (10)

 7.6 FIGURE 7.6 below shows the different stages in a variable speed drive. Answer the questions that follow.

FIGURE 7.6 VARIABLE SPEED DRIVE STAGES

FORMULA SHEET

The Community of the Community of the Community

THREE-PHASE TRANSFORMERS THREE-PHASE MOTORS AND STARTERS **STAR** V_L $V_{L} = \sqrt{3} \times V_{PH}$ and $I_{L} = I_{PH}$ V_{L} DELTA $I_L = \sqrt{3} \times I_{PH}$ and $V_L = V_{PH}$ $I_L = \sqrt{3} \times I_{PH}$ and $I_L = \sqrt{3} \times I_{PH}$ and $I_L = \sqrt{3} \times I_{PH}$ and STAR
 $V_L = \sqrt{3} \times V_{PH}$ and $I_L = I_{PH}$

DELTA
 $I_L = \sqrt{3} \times I_{PH}$ and $V_L = V_{PH}$
 $I_L = \sqrt{3} \times I_{PH}$ $I_L = I_{PH}$ $V_L = \sqrt{3 \times V_{PH}}$ and $I_L = I_{PH}$ DELTA S $(P_{app}) = \sqrt{3} \times V_1 \times I_1$ $Q(P_r) = \sqrt{3} \times V_L \times I_L \times Sin$ POWER S $(P_{app}) = \sqrt{3} \times V_i \times I_i$ \times Sin θ \qquad \qquad \qquad Q \qquad $P = \sqrt{3} \times V_L \times I_L \cos \theta$ $P = \sqrt{3} \times V_L$ $P = \sqrt{3} \times V_1 \times I_1 \text{Cos}\theta$ $\cos \theta = \frac{P}{S}$ $P = \sqrt{3} \times V_L \times I_L \times \cos \theta \times I$ $\cos \theta = \frac{P}{S}$ $P = \sqrt{3} \times V_L \times I_L \times \text{Cos}\theta \times \eta$ S $\cos \theta = \frac{P}{P}$ $\mathsf{v}_{\mathsf{ph}(2)}$ v_2 $\mathsf{ph}(1)$ $\mathsf{v}_{\mathsf{ph}(1)}$ $\mathsf{I}\mathsf{v}_1$ $\mathsf{p}_{\mathsf{h}(2)}$ $\mathsf{v}_{\mathsf{ph}(2)}$ v_{2} $1 \cdot ph(1)$ $1 \cdot 1$ $v_{ph(2)}$ $\mathsf{p}_h(1)$ V_{min} N₂ I $\bigcup_{\text{rk}(A)}$ N. N_{nto} N $V_{\text{ph}(1)}$ N V V **EFFICIENCY** $n = \frac{1000 \times 1000}{100} \times 100$ | input power $n_{\text{ph}(2)}$ $n = \frac{\text{output power}}{n} \times$ Transformer ratio: \blacksquare 1 Tropoformor rotio: TD $^{\prime}$ ¹ ng pangalang pangala Transformer ratio: TR = $\frac{N_1}{N_1}$ n_s = $\frac{1}{2}$ × 100 $\frac{1}{2}$ % slip= $\frac{1}{2}$ × 100 s s real $0/$ alignments. If $n = \frac{P_{\text{OUT}}}{P_{\text{out}} + \text{conper losses} + \text{core losses}} \times 100$ % slip= $\frac{n_s - n_s}{n_s}$ s and the state of s regions in the contract of the state o Per unit slip= $\frac{n_s - n}{n_s}$ $\begin{array}{r} \begin{array}{r} \end{array} \\ \begin{array}{r} \end{array} \\$ P copper losses core losses e de la provincia **OUT** <u>de la contradición de la contra</u> $I_L = \sqrt{3} \times I_{PH}$ and $V_L = V_{PH}$ N_2 p 60×f

